Hans Walser, [20210721]

Vielecke abdichten

0 Worum geht es?

Die Abbildung 1 zeigt ein regelmäßiges Zehneck, das von außen mit zehn regelmäßigen Fünfecken eingemauert ist.

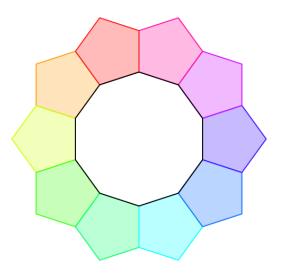


Abb. 1: Eingemauertes Zehneck

Kann ein regelmäßiges Vieleck von innen her mit regelmäßigen Vielecken abgedichtet werden?

1 Die triviale Lösung

Jedes regelmäßige Vieleck kann mit sich selber von innen her abgedichtet werden.

2 Nichttriviale Lösung

An jeder Ecke des Vieleckes kommen zwei Dichtungsvielecke zusammen. Deren Innenwinkel ist halb so groß wie der Innenwinkel des gegebenen Vieleckes und damit kleiner als 90°. Als Dichtungsvielecke kommen daher nur gleichseitige Dreiecke in Frage. Dann hat das gegebene Vieleck Innenwinkel 120°. Es muss ein regelmäßiges Sechseck sein (Abb. 2).

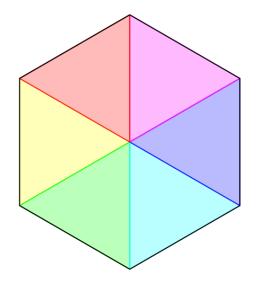


Abb. 2: Die einzige nichttriviale Lösung

3 Etwas Rechnung

Wir wollen auch rechnerisch zeigen, dass das Sechseck die einzige Lösung ist. Dazu wollen wir ein regelmäßiges n-Eck abdichten. Es hat den Innenwinkel $\underline{\alpha}$:

$$\alpha = \pi - \frac{2\pi}{n} = \pi \frac{n-2}{n} \tag{1}$$

Somit hat das Dichtungsvieleck den Innenwinkel β :

$$\beta = \frac{1}{2}\alpha = \pi \frac{n-2}{2n} \tag{2}$$

Für den Außenwinkel γ und damit den Zentriwinkel des Dichtungsvielecks ergibt sich:

$$\gamma = \pi - \beta = \pi \frac{n+2}{2n} \tag{3}$$

Daraus ergibt sich für die Eckenzahl e_n des Dichtungsvieleckes:

$$e_n = \frac{2\pi}{\gamma} = \frac{4n}{n+2} \tag{4}$$

Die Tabelle 1 gibt die ersten Werte für e_n .

n	e	е
3	12/5	2.4
4	8/3	2.666666667
5	20/7	2.857142857
6	3	3
7	28/9	3.111111111
8	16/5	3.2
9	36/11	3.272727273
10	10/3	3.333333333
11	44/13	3.384615385
12	24/7	3.428571429
13	52/15	3.466666667
14	7/2	3.5
15	60/17	3.529411765
16	32/9	3.55555556
17	68/19	3.578947368
18	18/5	3.6
19	76/21	3.619047619
20	40/11	3.636363636
21	84/23	3.652173913

n	e	e
22	11/3	3.666666667
23	92/25	3.68
24	48/13	3.692307692
25	100/27	3.703703704
26	26/7	3.714285714
27	108/29	3.724137931
28	56/15	3.733333333
29	116/31	3.741935484
30	15/4	3.75
31	124/33	3.757575758
32	64/17	3.764705882
33	132/35	3.771428571
34	34/9	3.77777778
35	140/37	3.783783784
36	72/19	3.789473684
37	148/39	3.794871795
38	19/5	3.8
39	156/41	3.804878049
40	80/21	3.809523810

Tab. 1: Eckenzahlen der Abdichtungsvielecke

Für n = 6 ergibt sich der schon gefundene Wert $e_6 = 3$

Die Folge e_n ist monoton wachsend mit dem Grenzwert 4. Daher gibt es keine weiteren ganzzahligen Lösungen für das Verpackungsvieleck mehr. Zwischen $e_6 = 3$ und dem Grenzwert 4 gibt es keine weiteren ganzen Zahlen. Basta

4 Sterne

In der zweiten Spalte der Tabelle 1 ist e_n als gekürzter Bruch angegeben. Zum Beispiel ist $e_3 = 12/5$. Wir können diesen Bruch als Stern interpretieren. Auf einem Kreis werden 12 Punkte regelmäßig verteilt. Wir starten in einem Punkt und gehen weiter zum fünften Punkt. Und so weiter jeweils zum fünftnächsten Punkt. So entsteht ein Stern (Abb. 3).

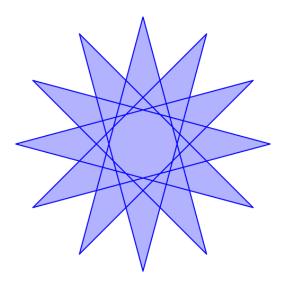


Abb. 3: Der 12/5-Stern

Wenn wir solche Sterne als Verpackungsvielecke zulassen, ergibt sich auch für n=3 eine Lösung (Abb. 4).

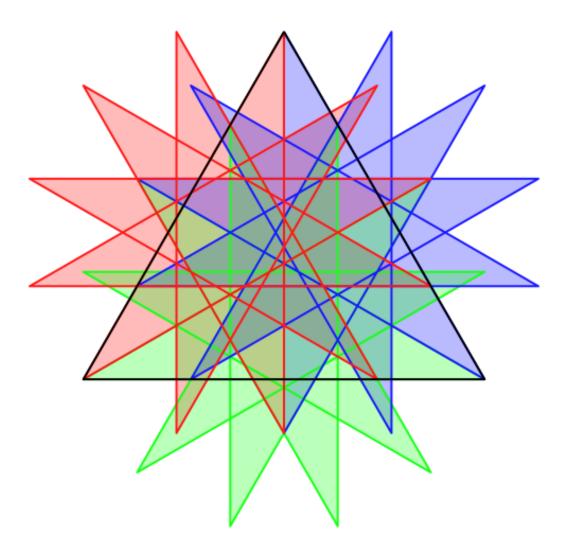


Abb. 4: Abgedichtetes Dreieck

5 Weitere Beispiele

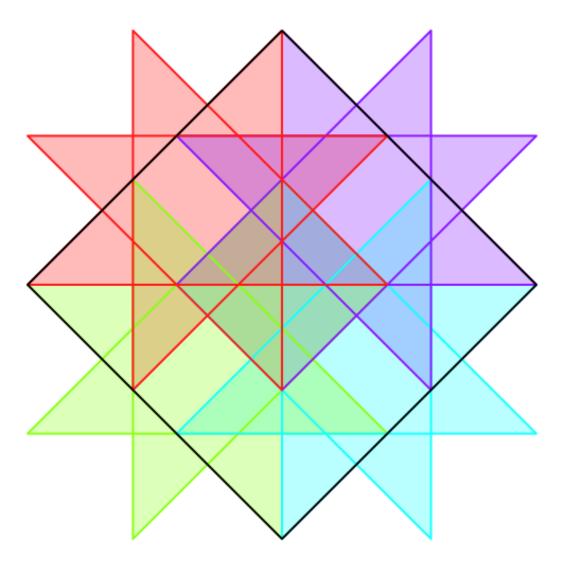


Abb. 5: n = 4, e = 8/3

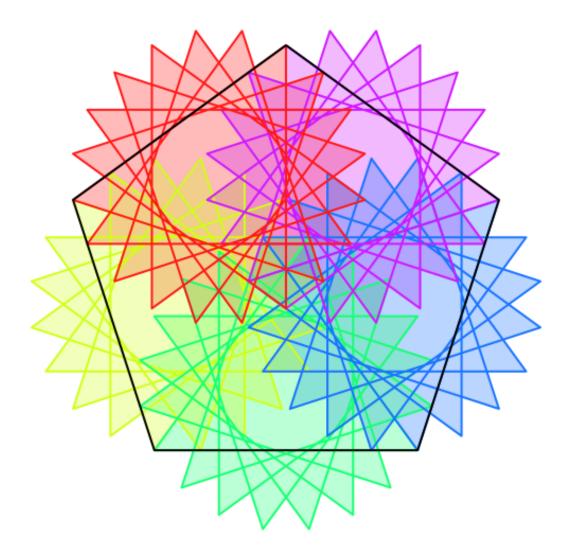


Abb. 6: n = 5, e = 20/7

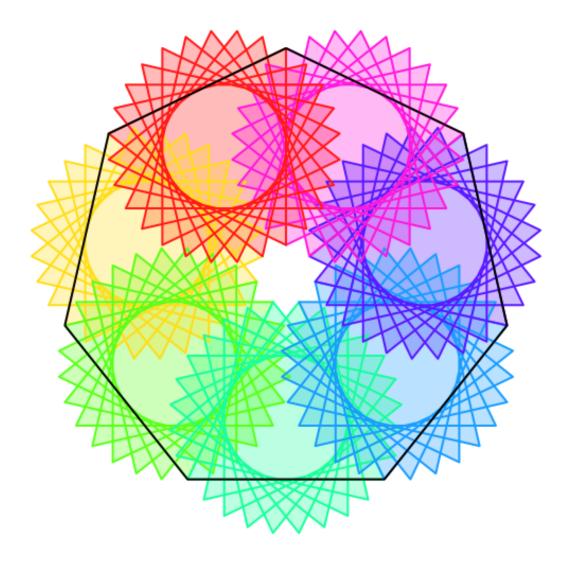


Abb. 7: n = 7, e = 28/9

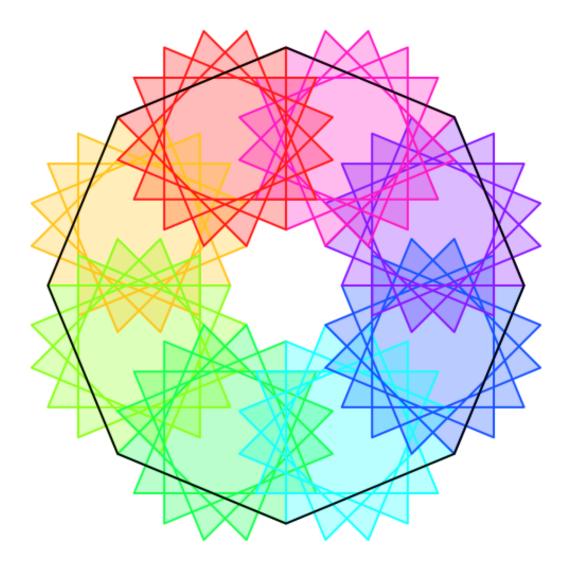


Abb. 8: n = 8, e = 16/5

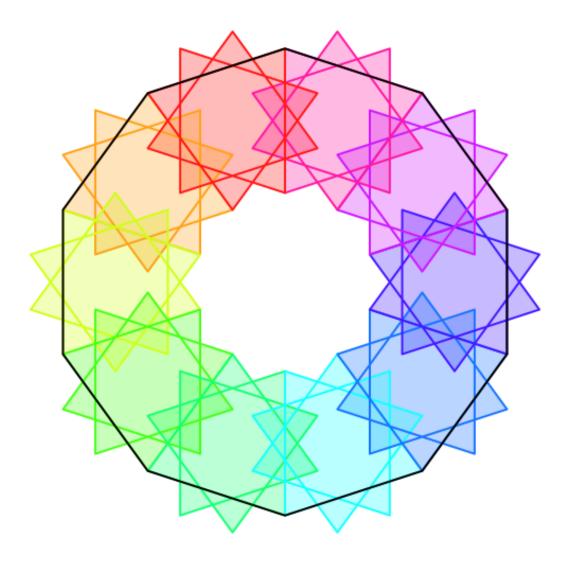


Abb. 9: n = 10, e = 10/3

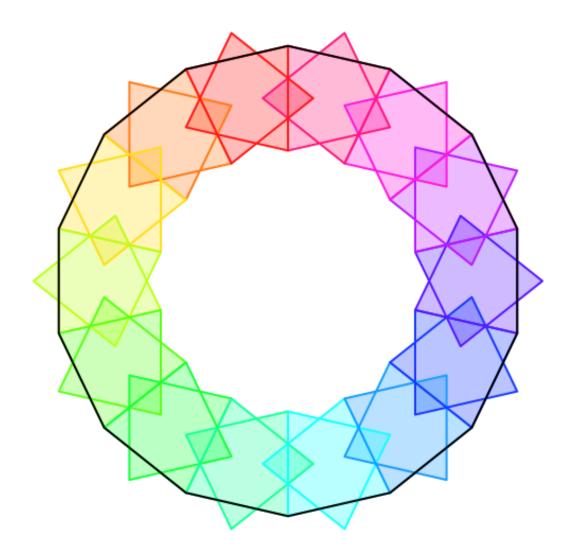


Abb. 10: n = 14, e = 7/2

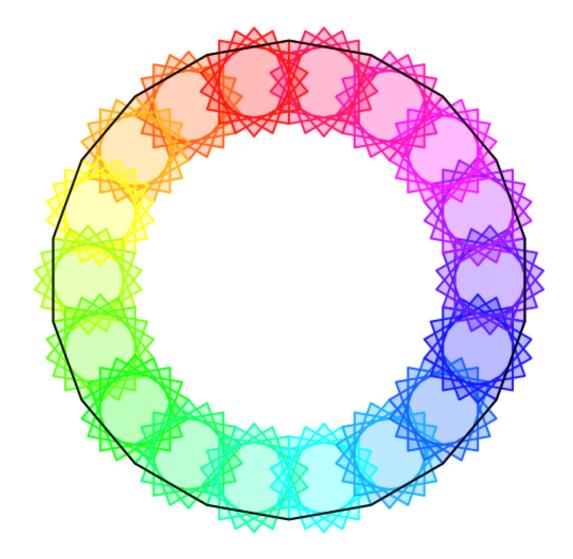


Abb. 11: n = 18, e = 18/5

Website

Hans Walser: Vielecke einpacken

http://www.walser-h-

m.ch/hans/Miniaturen/V/Vielecke_einpacken/Vielecke_einpacken.html