Hans Walser, [20160521]

Gigampfi

0    Worum geht es?

Es werden zwei Gigampfi-Probleme mit invarianten Winkeln vorgestellt.

1    Beispiel 1

1.1      Das Problem

An der Spitze eines gleichseitigen Dreiecks bringen wir einen drehbaren Balken an (Abb. 1). So entsteht eine Gigampfi (Wippe, Schaukel).

Abb.1: Gigampfi

Nun fźgen wir auf beiden Seiten des gleichseitigen Dreieckes je ein gleichschenkliges Dreieck an (Abb. 2).

Abb. 2: Gleichschenklige Dreiecke

Wie gro§ ist der Diagonalen-Schnittwinkel des Umrissviereckes (rot in Abb. 3)?

Abb. 3: Wie gro§ ist der rote Winkel?

1.2      Bearbeitung

In der Abbildung 4 sind die auf Grund der Konstruktion gleich langen Strecken blau eingezeichnet.

Abb. 4: Winkel in den gleichschenkligen Dreiecken

Mit  bezeichnen wir den Neigungswinkel des Balkens gegenźber der Horizontalen. Damit lassen sich die Winkel in den beiden gleichschenkligen Dreiecken angeben.

Durch die Diagonalen des Umrissviereckes entstehen zwei weitere gleichschenklige Dreiecke (grźn in Abb. 5).

Abb. 5: Weitere gleichschenklige Dreiecke

Das linke grźne gleichschenklige Dreieck hat die Winkel , , . Das rechte Dreieck hat die Winkel , , .

Damit sind im †berlappungsdreieck der beiden grźnen Dreieck zwei Winkel bekannt, nŠmlich  und . Der dritte Winkel ist der gesuchte rote Winkel. Er misst 120ˇ.

Der rote Winkel ist unabhŠngig von . Er bleibt beim Gigampfen konstant.

Der Diagonalen-Schnittpunkt wandert auf einem Ortsbogen (Abb. 6).

Abb. 6: Ortsbogen

Die Figur lŠsst sich zyklisch anordnen und mit weiteren gleichseitigen Dreiecken ergŠnzen (Abb. 7). Die Diagonalen bilden nun ein gleichwinkliges, aber nicht gleichseitiges Sechseck.

Abb. 7: Zyklische Anordnung

1.3      Verallgemeinerung?

Es ist nicht mšglich, das gleichseitige Dreieck durch ein gleichschenkliges Dreieck zu ersetzen (Abb. 8).

Der Schnittpunkt der Diagonalen wandert auf einer brezelartigen Kurve. Der Schnittwinkel ist nicht konstant.

Abb. 8: Die Brezel

2    Beispiel 2

2.1      Problem

Wir fźgen die beiden gleichschenkligen Dreiecke gemŠ§ Abbildung 9 an.

Abb. 9: Variante

Wieder ist der Diagonalen-Schnittpunkt invariant.

Im Unterschied zum ersten Beispiel funktioniert die Invarianz nun auch im allgemeinen Fall mit einem gleichschenkligen Dreieck als Stźtzdreieck (Abb. 10).

Abb. 10: Gleichschenkliges Dreieck als Stźtzdreieck

2.2      Bearbeitung

Wir zeigen gleich den allgemeinen Fall der Abbildung 10. Den Winkel an der Spitze des Stźtzdreieckes bezeichnen wir mit .

Mit  bezeichnen wir wieder den Neigungswinkel des Balkens gegenźber der Horizontalen (Abb. 11). Wir arbeiten nun mit den beiden magenta eingezeichneten gleichschenkligen Dreiecken.

Abb. 11: gleichschenklige Dreiecke

Das linke magenta gleichschenklige Dreieck hat die Winkel:

 

                                                                         (1)

 

Das rechte Dreieck hat die Winkel:

 

                                                                         (2)

 

In der Abbildung 12 sind einige der Winkel eingetragen.

Abb. 12: Winkel

Fźr das orange Dreieck (nicht gleichschenklig) erhalten wir an der Basislinie die beiden Winkel:

 

                                                                           (3)

 

 

 

Somit ergibt sich fźr den gesuchten roten Winkel:

 

                                                                 (4)

 

Dies ist unabhŠngig vom Winkel  und damit eine Invariante beim Gigampfen. Fźr ein gleichseitiges Stźtzdreieck ist der rote Winkel = 120ˇ.